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Abstract. In this paper we study the problem of the heat and diffusion of one substance through the pores of two 

layered material of gypsum board products, which may absorb and immobilize some of the diffusing substances 

with the evolution or absorption of heat. This paper proposes a thermal conductivity model for gypsum plate and 

gypsum carton at high temperatures, treating gypsum as a porous material consisting of solid and pores. We shall 

further assume linear dependence on both the temperature T and the moisture content in every layer 

M=const+aC-bT, where C is the concentration of water vapour in the air spaces, M is the amount of moisture 

absorbed by unit mass of fibre, a and b are positive constants. For two processes, the transfer of heat and 

moisture, we derive the system of 4 non-stationary partial differential equations (PDEs), 2 expressing the rate of 

the change of concentration of water vapour C in the air spaces and the other 2 the rate of the change of 

temperature T in every layer. The approximation of the corresponding initial boundary value problem of the 

system of PDEs is based on the conservative averaging method (CAM) by using special splines with hyperbolic 

functions. This procedure allows reducing the 2-D heat and mass transfer initial-boundary problem described by 

a system of 4 PDEs to initial value problem for a system of 4 ordinary differential equations (ODEs) of the first 

order. The results of calculations are obtained by MATLAB. 

Keywords: gypsum board products, heat and diffusion distribution, conservative averaging method, special 

splines, analytic and numerical solution. 

1. The mathematical model  

The study of heat and mass transfer through a porous media becomes much more interesting due 

to its vast applications. Many mathematical models are developed for the analysis of such processes, 

for example, mathematical models of moisture movement in wood, when the wood is considered as 

porous media.  

The study of hydrodynamic flow and heat transfer through a porous media becomes much more 

interesting due to its vast applications, such as drying in porous solids and soils, drying of wood and 

paper, soil mechanics, porous heat pipes, paper machines, liquid composite moulding. Many 

mathematical models are developed for the analysis of such processes, for example mathematical 

models of moisture movement in wood, when the wood is considered as porous media [1; 2].  

This paper proposes a thermal conductivity model for gypsum at high temperatures, treating 

gypsum as a porous material consisting of solid and pores. We study the heat and moisture transfer 

processes in the two porous layers of gypsum material. We consider the gypsum board material with 

two layered plates: gypsum plate (0.0525 m) with density 300 kg·m
-3

 and gypsum carton plate 

(0.0125 m) with density 1000 kg·m
-3

. The gypsum plate on one border is heated with temperature 

20 + 345lg(8t +1) ºC, where t is the time in minutes. In one layer the heat and mass transfer process 

are analysed and described in [1; 2; 5; 6]. 

The article [4] has viewed the heating and drying process in wood. In the present article the 

process of diffusion and heat transfer is consider in 1-D space domain  

 ( ){ }∞≤≤∞−∞≤≤∞−≤≤=Ω zyLxzyx ,,0:,, . 

The domain Ω  consists of two layer medium. We will consider the non-stationary problem of the 

linear diffusion theory for two layered piece-wise homogenous materials in the domain 

 ( ){ } 2,1,),(),,(),,(:,, 1 =∞−∞∈∞−∞∈∈=Ω − izyxxxzyx iii , 

where 1−−= iii xxH  is the height of the layer 212110 ,,0, HHLxHxxi +====Ω . 

We will further assume the linear dependence on both the temperature and moisture content in 

every layer [1] 
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 iiiii TCconstM ωσ −+= ,  (1) 

where  Ci – the concentration of water vapour in the air spaces;  

 Mi – the amount of moisture absorbed by unit mass of fibre;  

 σi and ωi are constants.  

We will consider the equilibrium uptake of moisture by a fibre to be related to water vapour 

concentration and temperature Ti by the linear relation (1).  

Consider an element of a porous material. We can derive two equations, one expressing the rate of 

the change of concentration and the other - the rate of the change of temperature. The water vapour 

diffusion PDEs is in the following form 
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where Di – the diffusion coefficient for moisture in air;  

 mi – is the fraction of the total volume of the material occupied by air; 

 (1-mi) – the fraction of the porous material occupied by fibre of density ρ; 

 t – time.  

The parameter gi follows from the fact that the diffusion is not along straight air channels. The 

rate at which the temperature of the element changes is determined by the heat conduction through air 

and fibres and the heat evolved when moisture is absorbed by fibres. The heat diffusion PDEs can be 

rewritten in the following form: 
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where ic  – the specific heat of the fibres; 

 Ki, ρi – the heat conductivity and the density of the porous material; 

 qi – the heat evolved when the water vapour is absorbed by the fibres.  

We assume that all coefficients in the PDEs are assumed constant and independent of the 

moisture concentration and temperature.  

By eliminating Mi from (1), we get the system of four PDEs 
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For the initial condition for t = 0 we give  

 021 )0,()0,( TxTxT == , 021 )0,()0,( CxCxC == ,  (5) 

where T0, C0 – known constants.  

We use the following boundary and continuous conditions: 
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where αT, αC – the constant mass transfer coefficients; 

 Tl(t) = 345lg(8t +1);  

 t – time in minutes; 

 Ta, Tb, Ca, Cb – the given constants of temperature and concentration on the boundary. 

2. CAM with integral hyperbolic splines in two layers 

The method of conservative averaging by using the special integral splines with hyperbolic 

trigonometrical functions is openly discussed in papers [8]. We consider the following model problem 
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where Q = (T, C), Tc(t) = Tb + Tl(t), Cc(t) = Cb.  

CAM procedure allows reduce the problem to initial problems for the system of ODEs. Using the 

averaged method with respect to x we have 
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We can see, if parameters a1 > 0, a2 > 0 tend to zero, the limit is the integral parabolic spline 

(Buikis [7]). 

The unknown functions mi(t), ei(t) can be determined from conditions (7): 

1) for 0=x  ( ) ( ) 02/ 1111111111 =−+−−− axv QbeHmQkedmD α  

2) for Lx =  )(5.0 22222 tQbeHmQ cxv =++  

3) for 1xx =  xvxv beHmQbeHmQ 2222211111 5.05.0 +−=++ , ( ) ( )2222211111 kedmDkedmD −=+ , 

where ,)5.0coth(5.0 iiiii HaaHd =  

 )25.0coth(25.0 iiii Haak =  
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Therefore, we obtain in a similarly way [4] the unknown functions mi(t), ei(t), i = 1; 2. 

From (7) follows the system of ODEs: 
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or from (4) 
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We rewrite the system of ODEs (11) in the following vector form: 

 0)0(),()()( WWtPFtAWtW =++=& , (10) 

where  00 ,,),( PFWtW  are the 4-order vector-columns with elements  
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The averaged solution is 
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where ( ) FAAtEWAttW
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−−−=  are the analytical solutions of the  

ODEs system  
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Splitting the vector P(t) in the form 0)()( PtgtP = , ( )2211210 ,,, λλ GGGGP =  the solution of the 

ODEs system 0)0(,)()()( 2022 =+= WPtgtAWtW& , ( )18lg345)()( +== ttTtg l  we can obtain using the 

spectral decomposition of the matrix A: 
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where  D – the diagonal matrix with negative discrete eigenvalues 4,1, =− iki , 

 V – the matrix of eigenvectors in the column, R(t) is the column-vector.  

If ( )18ln)( += ttg  then  
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where  Ei(q) – the integral exponential ([9], formula 3.352-3 in 325.p).  

The solution W(t) can be obtained also with Matlab solver “ode15s”. 

3. Some numerical results 

The results of calculations are obtained by MATLAB. We use the discrete values: 

mLNHNjjhx j 065.0,,0, ==== , mH 0525.01 = , mH 0125.02 = , τntn = , 

tNn ,0= , Ntτ = tf = 1000 s, Nt = 50, T0 = 20 ºC, C0 = 2 ºC, Ta = 20 ºC, 

Tb = 20 + 345lg(8t +1) ºC, Ca = 2 ºC, Cb = 0 ºC. 

We use the following parameters in each layer (such as the value of the parameter ρ in the first 

layer is 300, and the second layer is 1000): 

3
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m

J
cp ]700;800[= , ]1.0;01.0[=α , 1=sρ . 

The results of calculation are represented in Table 1 and Figs. (1-8), where T1v, T2v are the 

averaging values for temperature in layers, tf the final time in sec. The parameters 10,20 21 == aa  are 

obtained for minimal value of maximal error for averaging values.  

Table 1 

The values of tf, T(0,tf) T(H1,tf), T(H1,tf), T1v(tf), T2v(tf), maxC(x,tf) 

tf T(0,tf) T(H1,tf) T(L,tf) T1v(tf) T2v(tf) maxC(x,tf) 

300 61.4 247.6 576.4 122.4 405.6 0.55 

350 84.2 272.8 598.9 146.5 430.1 0.41 

400 107.2 296.6 618.6 170.4 452.4 0.31 

450 130.2 319.4 635.9 193.9 472.8 0.24 

500 152.9 341.1 651.5 216.8 491.8 0.22 

550 175.2 361.8 665.6 239.2 509.5 0.19 

600 196.9 381.7 678.4 260.9 526.1 0.16 

650 218.1 400.7 690.3 281.9 541.7 0.13 

700 238.7 418.9 701.3 302.3 556.5 0.10 
 

  

Fig. 1. Temperature depending  

on xfor tf = 500 s 

Fig. 2. Averaging concentration depending 

on t for tf = 500 s 
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Fig. 3. Averaging temperature depending  

on t for tf = 500 s 

Fig. 4. Concentration depending  

on x for tf = 500 s 

  

Fig. 5. Temperature depending  

on x for tf = 300 s 

Fig. 6. Averaging concentration depending  

on t for tf = 300 s 

  

Fig.7. Averaging temperature depending  

on t for tf = 300 s 

Fig. 8. Concentration depending  

on x for tf = 300 s 

For the numerical experiment we use also backward orientation: for gypsum plate H2 = 0.0525 m 

with density ρ2 = 300 kg·m
-3

 gypsum carton plate H2 = 0.0125 m with density ρ1 = 1000 kg·m
-3

, and 

Cm

W
K

o⋅
= ]4.0;8.0[ , 

2

66 ]101.0;108.0[
s

m
D

−− ⋅⋅= , ]8.0;4.0[=σ , 
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],8.0;0.1[=ω ],1;1[=g ],8.0;9.0[=q ],7.0;9.0[=m ,]800;700[
m

J
cp = ]01.0;1.0[=α , 1=sρ . 

The results of calculation are represented in Table 2 and Fig. (9). The distribution of temperature 

is nearly linear, the temperature increase in 0=x  and the averaging temperature decrease in second 

layer. 

Table 2 

The values of tf, T(0,tf) T(H1,tf), T(H1,tf), T1v(tf), T2v(tf) 

tf T(0,tf) T(H1,tf) T(L,tf) T1v(tf) T2v(tf) 

300 76.9 141.6 576.4 99.50 309.1 

350 114.2 182.7 598.9 138.8 345.0 

400 151.2 221.9 618.6 177.2 378.0 

450 186.9 259.1 635.9 234.1 408.5 

500 220.9 293.9 651.5 249.0 436.7 

550 252.9 326.5 665.6 281.8 462.7 

600 282.9 356.8 678.4 312.6 486.8 

650 311.0 385.1 690.3 341.2 509.1 

700 337.2 411.3 701.3 367.9 529.8 

 

Fig. 9. Backward temperature depending  

on x for tf = 300 s 

4. Conclusions 

1. For the transfer of heat in porous layer is considered the system of 4 PDEs for determination the 

concentration C  of water vapour in the air spaces and the temperatureT . 

2. The approximation of the corresponding initial boundary value problem of the system of PDEs is 

based on the conservative averaging method (CAM).  

3. CAM is used with new hyperbolic type splines. For these splines the best parameter for minimal 

error is calculated. This method can be used for solution of multi dimension 3D problem of PDEs. 

4. The problem of the system of PDEs with constant coefficients is approximated on the initial value 

problem of the system of ODEs of the first order, where it is solved analytically and with Matlab 

solvers. 

5. Such a procedure allows us to obtain a simple engineering algorithm for solving mass transfer 

equations for different substances in layered domain. 

6. The results of the numerical experiments can give some new physical conclusions about the 

drying process in porous material. 
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